
General announcements
• Done with quizzes - now you have a sense of how you are with the 

fundamentals of rotational motion—talk about what’s ahead . . . 
– If there’s a section you feel shaky on, come see me before block days start 

to go over it!

• Today: the wheel and pulsars, then talking about the block days, including:
– Study resources for the rotational motion unit test 
– Goalless problem guidelines and practice

• Tomorrow/Monday: looking through the possible rotational motion test 
questions + working on goalless practice

• Tuesday 3-4ish next week, I will be available in Poly 109 to answer questions



Back to the Non-AP Tom-Foolery
Remember the precessing wheel demonstration?

It was accompanied by a 
second demonstration in which 
a torque was quickly applied 
to the pinned axle of a rotating 
wheel, and instead of the 
wheel following the direction 
of the applied force, the wheel 
jerked to the right or left, 
depending upon the direction 
of the wheel’s rotation.
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It’s time to make sense of both of these.



The mathematical key to these seemingly mysterious behaviors are wrapped 
up in the relationship between torque and angular momentum (or, Newton’s Second 
Law, rotation style).  That is, the relationship: !

τ = Δ
!
L
Δt

This relationship suggests one of two things.

1.) If the direction of the net torque applied to a body matches the direction of the 
body’s angular momentum vector (translation: it matches the direction of the 
body’s angular velocity), an applied torque will change the magnitude of the 
angular momentum (that is, the body will angularly speed up or slow down).  The 
translational parallel to this is a force along the line of motion making a body 
speed up or slow down.  

2.) If the direction of the net torque applied to a body does not match the 
direction of a body’s angular momentum vector, the body’s angular momentum 
will still change but the change will be in the angular momentum’s 
DIRECTION, not its magnitude.  The translational parallel to this is a force that 
is perpendicular to the line of motion creating a centripetal situation.  The 
precessing wheel circumstance falls into this latter category.

But:



Starting with the hanging wheel rotating as shown:

The system is pinned where the chain attaches to 
the axle.  The force being applied is due to gravity 
and happens at the center of mass of the wheel.
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With the torque 
(i.e.,       ) at right 
angle to    , the 
direction of the 
change of angular 
momentum 
demands that the 
body’s axle must 
precess! 
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The torque produced by gravity is at right angles 
to the plane defined by      and    .
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--What about the jerking wheel?  Assume a clockwise rotation.  The angular 
velocity (and, hence, angular momentum) vector is shown below in the sketch with 
the view from above shown to the right (I’ve put a nub at point A for reference).
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--Let’s try to rotate the wheel about point A by applying a quick downward 
force F to point A.  

eye looking down

looking from above

(pin here)

A

F
F (quick impulse into page)

(pinned at point A)

A



--Note that the direction of the torque applied by     is NOT in the direction 
of the angular momentum vector, which is along the axle.  
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--If the torque is in the direction of the CHANGE OF angular momentum, then 
the NEW angular momentum direction must be as shown below . . . and hence we 
predict precession!  
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Coming full circle (see what I did there?)

• On the first day of this unit, we saw THE WHEEL.
• What happened when it was released while at rest?

• What happened when it was released while spinning?

Gravity exerted a torque and it rotated down to a 
horizontal position.

mg

R

It stayed mostly vertical and precessed about a 
horizontal circle – not witchcraft, but physics!

This is all about vectors and how they interact. Let’s look at the wheel 
from two different views…



The Wheel – Explained!
Using the right hand rule, we know that the torque
exerted by gravity is pointing out of the page towards 
us right now.
Also using the right hand rule, we can find the 
angular momentum vector as the wheel 
rotates. For now, let’s say the wheel is rotating 
into the page, so its angular momentum vector 
is to the left.

L

𝝉
These two vectors are at right angles to each other. Previously, we saw that a 
force acting at a right angle to a velocity vector caused the velocity to change 
direction but not magnitude.  When did we see this? (circles!)

Therefore, the torque vector won’t change the magnitude of the angular 
momentum vector, but will change its direction. The wheel will move towards 
the direction of the torque…at which point the torque is pointing in a slightly 
different direction, so the wheel continues to move! 



The Wheel – Explained!
In another view of the same thing, looking down from the top on the situation:

http://hyperphysics.phy-astr.gsu.edu/hbase/rotv2.htm
l



A good video showing this…
• From Veritasium (an awesome physics channel):

– Gyroscopic precession

– "Anti-gravity" wheel

https://www.youtube.com/watch?v=ty9QSiVC2g0
https://www.youtube.com/watch?v=GeyDf4ooPdo


17.)

•

Example 6: In 1967 as a graduate student, Jocelyn 
Bell (aca Dame Jocelyn Bell Burnett) observed, in the 
face of scant support from her advisor, Antony Hewish, 
the first pulsar.  In 1974, in a classic “keep ‘em
barefoot and pregnant” move, the all male, presumably 
all white Nobel committee gave Hewish the Nobel 
Prize in Physics for the discovery while ignoring Bell altogether.  With that 
monumental injustice in mind, consider the lowly pulsars:

When a star with a core between 1.4 and 1.8 solar masses dies, it explodes spectac-
ularly in what is called a supernova.  (Example: In 1054, a supernova occurred that 
was observed by the Chinese and was visible during the day for two weeks.)  When 
a supernova happens, the outer part of the star blows outward creating what is called 
a nebulae (the supernova in 1054 created the Crab Nebulae) and the core is blown 
inward.  The implosion is so violent that it forces electrons into the nuclei of their 
atoms (removing all the space in the atoms in the process) where they combine with 
the protons there to produce neutrons that stop the implosion by literally jamming 
up against one another.  With all that space removed, the resulting structure is 
incredibly dense (think a thousand Nimitz class aircraft carriers compressed into 
the size of a marble) and small (think 10 to 15 kilometers across).

core implodes



18.)

(con’t) The significance of all of this is that nature provides us with a WICKED 
example of conservation of angular momentum.

How so? There are no external torques acting during the supernova, so angular 
momentum is conserved.  The enormously massive structure spread out over 
hundreds of thousands of kilometers starts out with a HUGE RADIUS and 
angular momentum even though its angular speed is low (the sun takes 25 days to 
rotate once about its axis).  In other words, its angular momentum looks like: 

L = Ibefore ωbefore



ωafter
19.)

After the supernova, the moment of inertial drops precipitously because the radius 
goes from several hundred thousand kilometers to, maybe, 10 kilometers during 
the explosion, BUT THE ANGULAR MOMENTUM STAYS THE SAME which 
means the angular velocity skyrockets.  In other words, the final angular 
momentum relationship will look like:

L = Iafter

In short, pulsars (neutron stars) are super dense structures that rotate anywhere 
from a few cycles per second all the way up the several hundred cycles per 
second, all as a consequence of conservation of angular momentum.



earth  
 in path
   of sweep

20.)

But what’s really cool is that they put out 
what is called synchronous radiation—
radiation that is very directional and that is 
in the radio frequency range.  So if the 
sweep of radiation of one of these fast 
rotating objects just happens to cross the

synchronous 
   radiation
(radio waves)

ω

fast rotating,
 super massive 
  neutron star

synchronous 
   radiation
(radio waves)

And as a small side-point, I’ve REALLY simplified 
what’s going on with these things.  According to Sterl
Phinney, Professor of Astrophysics at Caltech (and a 
Poly parent), the progenitor of the Crab Nebula lost 
99% of its angular momentum during and since its 
supernova.  More about this on the next slide.

earth’s path, a blast of radio wave will hit the earth 
every time the star completes one rotation.  In 
other words, we can hear them using a radio 
telescope. This is what you will experience on the 
next slide.  Pretty amazing!



Pulsars
• Another cool application of angular momentum is pulsars

– A pulsar is what’s left over after a star collapses and goes nova
– Normally, a star is huge (sun-like) and rotates at some (relatively small) 

angular velocity. When that star collapses, its mass compresses into area only 
a few km across (think city-sized) à I⇓ so 𝛚⇑
• This releases a lot of energy (the ”supernova” explosion) 

https://www.space.com/32661-pulsars.html

§ The dense core left over is spinning more 
quickly, and what we pick up in our 
astronomical equipment is a “pulsing” signal 
(hence the name)  

§ This happens because the magnetic field of 
the star isn’t aligned with its rotation axis. 



Listening to pulsars
• We can “hear” this signal by converting the radio signals 

from pulsars into audible “clicks” with the same frequency, 
like this! 



GOALLESS  PROBLEMS

The following is a very brief summary of the things you need to consider when 
doing goalless problems.  Note that you will be working in groups of two or three, 
your problem will be worth 20 test points and each group will get the grade.  Once 
you’ve been given your problem:

--identify what you know;
--take a few minutes to map out what you might determine and how you might 
do that;
--try to use concepts from all of the units we’ve done this year (not rotation);
--use more than one approach to determine a quantity if possible—box results;

--visually display results when possible (use graphs);
--BLURB your brains out—everything you do should be preamble with a blurb;
--make drawings (f.b.d.’s, etc.) to make it clear what you are doing;

--the underlying theme should be, “what can I find out about this situation?”



GOALLESS  PROBLEMS
Approach the following goalless problem as you would on the Block Day.  To add 
a bit of zest to the proceedings, I will give a few extra credit points to any group 
whose total number of determined unknowns is within 10 of the number I come up 
with . . . 



Several students are riding in bumper carts at an amusement park.  The combined 
mass of cart A and its occupants is 250 kg.  The combined mass of cart B and its 
occupants is 200 kg.  Cart A is 15 meters behind cart B and moving to the right at 
2.0 m/s when the driver decides to bump into car B, which is at rest.

Cart A accelerates at 1.5 m/s/s to a maximum speed of 5.0 m/s, then continues at 
that constant velocity until it strikes car B.

After the collision, which lasts 0.3 seconds, cart B moves to the right at a speed of 
4.8 m/s.

Shortly thereafter, cart B is just able to hold traction around a sharp, 3.0 meter left-
hand turn.

m1 = 250 kg m2 = 200 kg

v1 = 2.0 m/s

d = 15 m



1.) There will be multiple-choice questions from the posted questions on the class Website –
they are split into two pdfs but questions will be drawn from both .  As you will have had 
the chance to see all of the possible questions beforehand, these will be worth 3 pts each on 
the test.   There may also be a few very short answer questions (e.g. yes/no statements about 
situations; quick “what’s the rotational counterpart to…” type questions; general 
information questions).

For the Rotational Motion test!

0

2.) Know how to use the rotational kinematics equations.  (I will provide these on the 
test so you don’t have to memorize them.)  

4.) Know what the moment of inertia tells you, what the definition of the moment of 
inertia for a group of discrete masses is, and what the moment of inertia for a point 
mass is.  I will provide all other needed moment of inertia relationships on the test.

3.) Know how to relate a rotating body’s angular velocity or angular acceleration to the 
translational velocity or acceleration of a point on the body.  That is, understand how             
and             work.

5.) Know how to use the parallel axis theorem.



SUMMARY OF WHAT TO KNOW!

00

6.) Know the three ways to calculate a torque (by name!) and how to draw the r vector.

7.) Be able to determine the DIRECTION of a rotating body’s angular velocity vector.  
Know what the pieces of “                        “ tell you.

9.) I will pick, possibly, two of the problems that follow.  I would suggest you work in 
teams to determine how to do each, then get together and talk about each.  In any case, you 
should know the ins-and-outs of each problem.  

NOTE: you should focus on problems 1, 2, 3, 4, 5, and 8. The others are interesting 
and a good brain teaser to see how well you really understand things, but the ones listed 
above are the ones we will choose from for the exam. 

Another note: for each of these, make sure you understand how to derive equations
(meaning start with a governing equation like N2L, conservation of energy, momentum, 
etc) and fit them to the situation (meaning put in the proper variables).

8.) Be familiar with the examples we’ve analyzed a lot with different methods (rotating 
beam pinned somewhere along its length, rolling ball down ramp, simple Atwood 
Machine, merry go round). 



On the next several pages you will find synopses of the problems #1, 2, 3, 4, 5 and 8 
(i.e., the problems alluded to on the previous slide above).  The full blown problems with 
solutions can be found on the class Website.  These problems do not include short answer 
or multiple choice questions, which you will run into on your block-day test, but they are 
indicative of a goodly part of your test you will take then.



A massive pulley is used in an Atwood machine.  What is known is:
m1,  m2,  M, R, g, and Icm,pully =

1
2

MR2

A finger is used to keep the pulley from rotating.  Its force is 
applied to the pulley at “R/2” as shown in the sketch (you can 
assume the force is perpendicular to the radius vector).

a.) Draw a f.b.d. for both masses and the pulley.
m1

m2

Ffinger
M

R

1.)

b.) How much force must the finger apply to keep the system stationary?

m1 m2

M

c.) You remove the finger and the system begins to accelerate.  What is the magnitude of the 
acceleration of the masses?

e.) The mass       drops a distance “h.” Once there, what is its velocity magnitude?m2

f.) For #e, what is the angular velocity of the pulley?
g.) For #e, what is the pulley’s angular momentum?

d.) What is the angular acceleration of the pulley (include the sign)?



A beam of length “L” is pinned at an angle    to a wall.  
Tension in a rope “3L/4” from the pin keeps it in 
equilibrium.  There is amassive lump a distance 
“5L/6” units up the beam.  What is known is:

mbeam,  mlump,  L, g, θ, φ and Icm,beam = 1
12

mbL
2

a.) Draw a f.b.d. for the forces on the beam.

2.)

b.) What must the tension in the rope be for equilibrium?

c.) Use the Parallel Axis Theorem to determine the moment of 
inertia of the beam about the pin.

d.) Determine the moment of inertia of the lump, then 
system, about the pin.

e.) The rope is cut and the beam begins to angular accelerate downward.  What is the beam’s 
initial angular acceleration?

f.) What is the initial acceleration of the lump?

g.) The beam rotates about the pin. What is its angular velocity as it passes through the vertical?

h.) What is the beam’s center-of-mass velocity as it passes through the bottom of the arc?

i.) What is the beam’s angular momentum about the pin about that point?



A thin skinned ball sits on an incline held stationary by your 
finger (ah, that finger again).  What is known is :

m,  R, g, θ, and Icm of ball =
2
3

mR2

a.) Draw a f.b.d. identifying all the forces acting on the ball.

3.)

c.) Use the Parallel Axis Theorem to determine the moment of 
inertia about the point of contact between the ball and the incline.  

b.) Determine the magnitude of the finger force 
required to hold the ball in equilibrium. θ

mb

Ffinger

fbd

d.) With the finger removed, what is the magnitude of the acceleration 
of the ball’s center of mass?

e.) What is the ball’s angular acceleration about its center of mass?

g.) After dropping “h,” what is the ball’s angular velocity?

f.) The ball drops a distance “h” from rest.  What is the magnitude of the velocity of its center 
of mass?

h.) What is the angular momentum of the ball after dropping “h?”



A hanging mass is attached to a string which is 
threaded over a massive pulley and attached to a 
second mass sitting on a frictionless incline.  Your 
finger keeps everything stationary.  Known is:

m1,  mh,  mp, R, g, θ, and Icm of pulley =
1
2

mpR
2

a.) Ignoring the forces acting at the pulley’s 
pin, draw a f.b.d. identifying all the forces 
acting on both masses and the pulley.

4.)

b.) Determine the finger force required to 
just hold the system in equilibrium.

θ
mh

m1
Ffinger

mp

c.) The finger is removed and the system begins to accelerate.  What is its acceleration 
magnitude?  (Assume the acceleration is down the incline.)

d.) What is the pulley’s angular acceleration?

e.) The hanging mass drops from rest a distance “h.” What is its velocity magnitude by the 
end of the drop?

f.) What is the angular velocity of the pulley at that point?

g.) What is the angular momentum of the pulley at that point?



A hanging mass is attached to a string which is 
threaded over a massive pulley and attached to a 
second mass sitting on an frictional tabletop.  
Your finger perpendicular to the radius vector 
and a distance R/3 from the axis of rotation 
maintains motionlessness. Known is:

1.)

m1,  mh,  mp, R, g, µk , and Icm of pulley =
1
2

mpR
2

5.)

a.) Draw a f.b.d. identifying all the forces acting on both masses and the pulley.

b.) Determine the force required of 
the finger to keep the system in 
equilibrium. 

c.) The finger is removed and the system

d.) What is the pulley’s angular acceleration?
e.) The hanging mass drops a distance “h.”  What is its velocity magnitude at that point?
f.) What is the pulley’s angular velocity at that point alluded to in Part e?

g.) What is the pulley’s angular momentum at that point alluded to in Part e?

begins to accelerate.  What is the hanging mass’s acceleration magnitude? 



A beam of length “L” is pinned at an angle    a quarter 
of the way up the beam (i.e., at L/4).  Tension in a rope 
three-quarters of the way from the end keeps it 
stationary.  What is known is:

mbeam, L, g, θ, φ and Icm,beam = 1
12

mbeamL2

All the same questions asked in Question #2!

8.)

pin


